Projekte

AutoLern

Selbstlernende Werkzeugmaschinen für eine hocheffiziente Produktion (AutoLern)

Programm: PDA Forschung für Produktion
Bekanntmachung: Lernende Produktionstechnik - Einsatz künstlicher Intelligenz (KI) in der Produktion (ProLern)
Wettbewerb: Lernende Produktionstechnik - Einsatz künstlicher Intelligenz (KI) in der Produktion

Kurzbeschreibung:
Im Bemühen der produzierenden Unternehmen um effiziente und robuste Prozesse gewinnen in jüngster Zeit Methoden der Künstlichen Intelligenz (KI) zunehmend an Bedeutung. Für diese Anwendungen werden Modelle zumeist mit massiven Datenmengen trainiert, die aber immer nur einen begrenzten Zeitraum und damit nur einen Teil der Einflussfaktoren abbilden können. Durch die ständige Fortentwicklung der Fertigungsprozesse sowie neue Produktvarianten, Wartung und Verschleiß ändern sich die Rahmenbedingungen. Damit nimmt die Modellgenauigkeit ab und die Validität der meist datengetriebenen Modelle und Algorithmen muss überprüft und nötigenfalls angepasst werden.
Im Forschungsprojekt AutoLern wird daher eine gemeinsame Entwicklungsplattform aufgebaut, über welche Methoden bereitgestellt werden, um die im laufenden Betrieb unterschiedlicher Typen von Werkzeugmaschinen gesammelten Daten zu analysieren. Auf dieser Basis kann festgestellt werden, wenn die KI-Modelle die vorgegebene Genauigkeit nicht mehr erreichen und ob eine Anpassung vorzunehmen ist. Diese soll selbstständig erfolgen und gewährleistet, dass die entwickelten KI-Algorithmen unter verschiedensten Randbedingungen im industriellen Umfeld flexibel einsetzbar sind.

Projektdauer: 01.06.2021 − 31.05.2024

Projektkoordinator:
Dr. Gerhard Hammann
TRUMPF Werkzeugmaschinen SE + Co. KG
Telefon: +49 7156 303-30414
E-Mail: gerhard.hammann@trumpf.com

Ansprechpartner bei PTKA:
Dipl.-Ing. Stefan Kuntz
Telefon: +49 721 608-24628
E-Mail: stefan.kuntz@kit.edu

Detaillierte Projektbeschreibung

Problemstellung
Um wettbewerbsfähig zu bleiben, müssen produzierende Unternehmen die Fähigkeiten zur schnellen Reaktion auf Veränderungen und Störungen im Produktionsbetrieb entwickeln. Dies gilt unabhängig von der Größe der Unternehmen und erfordert robuste, anpassungsfähige Fertigungssysteme, die gleichzeitig nahe am erreichbaren Optimum arbeiten. Im Bemühen der produzierenden Unternehmen um effiziente und robuste Prozesse gewinnen in jüngster Zeit Methoden der Künstlichen Intelligenz (KI) zunehmend an Bedeutung. Für diese Anwendungen werden Modelle zumeist mit massiven Datenmengen trainiert, die aber immer nur einen begrenzten Zeitraum und damit nur einen Teil der Einflussfaktoren abbilden können. Durch die ständige Fortentwicklung der Fertigungsprozesse sowie neue Produktvarianten, Wartung und Verschleiß ändern sich die Rahmenbedingungen. Damit nimmt die Modellgenauigkeit ab und die Validität der meist datengetriebenen Modelle und Algorithmen muss überprüft und nötigenfalls angepasst werden.

Projektziele
Das übergeordnete Entwicklungsziel des Forschungsprojekts AutoLern ist es daher Methoden für selbstlernende Werkzeugmaschinen zu entwickeln, die in der Lage sind, ihre Validität auf Basis von im laufenden Betrieb gesammelten Daten zu überprüfen und sich an veränderte Randbedingungen anzupassen. So können die selbstlernenden Werkzeugmaschinen auch bei Veränderungen von Anlagenkomponenten, der Eigenschaften des Rohmaterials und der Umweltbedingungen eine gleichbleibend hohe Produktqualität bei erhöhter Anlagenverfügbarkeit gewährleisten.

Vorgehensweise
Für das Vorhaben sind beispielhaft zwei Anwendungen vorgesehen: Die „Werker-Assistenz“ zum Einrichten der Maschine oder Störungsbeseitigung sowie die „Echtzeitregelung von Prozessen“ zur signifikanten Verbesserung der Verfahrensführung. Hierfür werden KI-Modelle mit Daten aus Produktionsmaschinen der beteiligten Maschinen- und Anlagenbauer trainiert und dann auf den Maschinen implementiert. Durch eine gezielte Veränderung der Randbedingungen, wie beispielsweise Verschleiß der Werkzeuge oder andere Materialeigenschaften, wird die Validität der Modelle überprüft. Mit Hilfe von im Projekt entwickelten Methoden sind die KI-Modelle an die wechselnden Randbedingungen anzupassen. Bei der prototypischen Umsetzung werden die Modellangleichungen und die sich dadurch verbessernde Modellvalidität untersucht und iterativ verbessert. Dem Anlagenbetreiber sollen dabei Werkzeuge und Vorgehensweisen an die Hand gegeben werden, die ihn befähigen, eine Modellanpassung autonom oder mittels zusätzlicher Informationen durch einen Prozessexperten vorzunehmen. Dies zielt darauf ab, die industrielle Umsetzbarkeit von KI-Modellen und die Einbindung von KI in die laufende Produktion zu vereinfachen und zu verbessern.

Ergebnisse und Anwendungspotenzial
Die Einbeziehung verschiedener Typen von Werkzeugmaschinen und der Austausch über eine gemeinsame Entwicklungsplattform soll es ermöglichen, für den Bereich Werkzeugmaschinen eine allgemein gültige Lösung zu schaffen, die mittels adaptiver Algorithmen Produktionsanlagen zu selbstlernenden Objekten macht. Die erarbeiteten Methoden sollen eine Übertragbarkeit auf weitere Produktionsverfahren, beispielsweise auf Prozesse des Umformens, ermöglichen. Damit können Werkzeugmaschinen angeboten werden, die sich selbstständig an die wechselnden Randbedingungen einer industriellen Produktion anpassen.

Projektträger

Projektträger Karlsruhe (PTKA)
Produktion, Dienstleistung und Arbeit
Karlsruher Institut für Technologie (KIT)

Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen

+49 (0)721 608-25281
+49 (0)721 608-992003

info@ptka.kit.edu
Standort Dresden
PTKA

Ansprechpartner

Sekretariat Karlsruhe

Celina Gabber und Solvig Grünitz

+49 (0)721 608-25281
zentralessekretariat@ptka.kit.edu

Sekretariat Standort Dresden

Heike Blumentritt

+49 (0)721 608-31435
heike.blumentritt@kit.edu