Projekte

TransKI

Beherrschung von Zerspanprozessen durch transferierbare künstliche Intelligenz - Grundlage für Prozessverbesserungen und neue Geschäftsmodelle (TransKI)

Programm: PDA Forschung für Produktion
Bekanntmachung: Lernende Produktionstechnik - Einsatz künstlicher Intelligenz (KI) in der Produktion (ProLern)
Wettbewerb: Lernende Produktionstechnik - Einsatz künstlicher Intelligenz (KI) in der Produktion

Kurzbeschreibung:
Bei Zerspanprozessen wird die Bauteilqualität maßgeblich vom Verschleiß der eingesetzten Werkzeuge beeinflusst. Die Wirkzusammenhänge zwischen Verschleiß und Bauteileigenschaften sind jedoch komplex und lassen sich mit herkömmlichen Methoden nur bedingt analysieren. Deswegen nutzt die Forschung in jüngster Zeit vermehrt Modelle, die auf Algorithmen basieren, welche ein bestimmtes Verhalten anhand von Trainingsdaten erzeugen. Mit diesen Maschinellen Lernverfahren (ML) lassen sich die beschriebenen Wirkzusammenhänge bei der Zerspanung vorhersagen – allerdings nur für die betrachteten Anwendungsfälle unter Laborbedingungen. Infolgedessen ist das Übertragen auf neue Fälle nicht ohne weiteres möglich, was eine industrielle Nutzung derartiger Modelle bislang ausschließt.

Ziel des Forschungsprojekts TransKI ist es, ML-Modelle zu trainieren und diese mithilfe von Transfer-Learning-Methoden auf neue Anwendungsfälle zu übertragen. Dieser erstmalige Einsatz von Transfer-Learning in kundenspezifischen, praxisrelevanten Zerspanprozessen ist essentiell, um zukunftweisende Prozessunterstützungen in Form eines Assistenzsystems in die Produktionsumgebung einzubinden und entsprechende, Transfer-Learning-basierte Geschäftsmodelle entwickeln zu können. Weiterhin lassen sich Produktivität sowie Werkstückqualität in der Fertigung steigern.

Projektdauer: 01.07.2021 − 30.06.2024

Projektkoordinator:
Mathias Schmidt
K.-H. Müller Präzisionswerkzeuge GmbH
Telefon: +49 6788 9798-12
E-Mail: m.schmidt@mueller-sien.de

Ansprechpartner bei PTKA:
Dipl.-Ing. Stefan Kuntz
Telefon: +49 721 608-24628
E-Mail: stefan.kuntz@kit.edu

Detaillierte Projektbeschreibung

Problemstellung
Die Produktionskosten eines zerspanten Bauteils werden maßgeblich durch das Zeitspanvolumen und den Werkzeugverschleiß bestimmt. Zunehmender Werkzeugverschleiß wirkt sich signifikant auf die Werkstückqualität aus. Hierbei kann es neben Abweichungen von den geforderten geometrischen Toleranzen zu einer verstärkten Gratbildung, zu erhöhten Rauheiten und zu einer Beeinflussung der metallurgischen und mechanischen Eigenschaften der Werkstückrandzone kommen. Um dem entgegenzuwirken, werden Werkzeuge in der industriellen Praxis häufig vorsorglich deutlich zu früh ausgetauscht. Neben dem verschwendeten Standzeitpotential resultieren hieraus längere Rüstzeiten, sowie höhere Werkzeugkosten. Die Verwendung eines KI-gestützten, intelligenten Werkzeugmanagements bietet, in Kombination mit einem tieferen Verständnis der Wirkzusammenhänge innerhalb des Zerspanprozesses, das Potential die ansonsten verschwendete Standzeit bestmöglich auszunutzen. Durch diese Möglichkeit lässt sich eine ressourceneffiziente, sowie nachhaltige Verbesserung der Produktivität realisieren, welche erheblich zur Steigerung der Wettbewerbsfähigkeit produzierender Unternehmen beitragen kann.

Projektziele
Ziel des Forschungsprojekts TransKI ist es, auf Maschinellen Lernverfahren (ML) basierende Modelle zu trainieren und diese mithilfe von Transfer-Learning-Methoden auf neue Anwendungsfälle zu übertragen. Dieser erstmalige Einsatz von Transfer-Learning in kundenspezifischen, praxisrelevanten Zerspanprozessen ist essentiell, um zukunftweisende Prozessunterstützungen in Form eines Assistenzsystems in die Produktionsumgebung einzubinden und entsprechende, Transfer-Learning-basierte Geschäftsmodelle entwickeln zu können.

Vorgehensweise
In der ersten Phase des Forschungsprojekts werden industrielle Anwendungsfälle definiert, Zerspanversuche durchgeführt und ausgewertet. Mit den aufbereiteten Daten dieser Versuche lassen sich grundlegende ML-Modelle entwickeln. In der zweiten Phase geht es darum, die Modelle für neue Anwendungsfälle zu befähigen. Dabei wird die Versuchsumgebung, d. h. der Prozess, die Maschine und Sensorik sowie der Werkstoff, schrittweise verändert, verschleißabhängige Gemeinsamkeiten identifiziert und a-priori Expertenwissen in die Untersuchungen einbezogen. Um die optimierten ML-Modelle industriell nutzbar zu machen, werden in der dritten Projektphase ein Assistenzsystem zur Prozessvorsteuerung sowie Transfer-Learning-basierte Geschäftsmodelle entwickelt.

Ergebnisse und Anwendungspotenzial
Die gewonnenen Erkenntnisse werden in mehreren unterschiedlichen Pilotanwendungen für das Bohren und Fräsen validiert. Des Weiteren adressiert das Vorhaben nicht nur die spezifische Problemstellung aus der Werkzeugindustrie, sondern eröffnet auch mittels Transfer-Learning neue Wege, um bislang unerschlossene Wertschöpfungspotenziale zu heben, beispielsweise bei Investitionsgüterherstellern oder produzierenden Unternehmen anderer Branchen. Durch Aktivitäten der am Vorhaben mitwirkenden Partner in verschiedenen Vereinen, Arbeitskreisen und Gesellschaften werden Projektergebnisse auch branchenübergreifend in der industriellen Praxis verbreitet. Hinsichtlich Standardisierung und Normung sind zwei Partner in den themenrelevanten VDI-Ausschüssen beteiligt, deren Arbeit in die Erstellung von VDI-Richtlinien einfließen.

Publikationen

Künstliche Intelligenz in der Zerspanung - Forschungsprojekt zur Produktion von morgen
Autor: Schmidt, M.
Verlag: Carl Hanser Verlag
Erscheinungsjahr: 2022
Beschreibung: Wie bei allen industriellen Anwendungen herrscht auch bei der Zerspanung stetig wachsender Kostendruck. Maßgeblich für die Produktionskosten eines zerspanten Bauteils sind der Werkzeugverschleiß und das Zeitspanvolumen. Je effizienter Werkzeuge eingesetzt werden, umso geringer werden die Kosten. Maschinelles Lernen (ML) kann dabei als Entscheidungsunterstützung für den Werkzeugwechsel einen wertvollen Beitrag leisten. Allerdings gibt es hier keine Patentlösungen, zu unterschiedlich sind die einzelnen Prozesse von Anwendungsfall zu Anwendungsfall. Eine Lösung kann das sogenannte Transfer Learning bieten: Hierbei wird Wissen von verwandten, bereits gelernten Aufgaben genutzt, um ML-Modelle schneller für neue, aber verwandte Aufgaben trainieren zu können. Seit Juni 2021 läuft ein durch das Bundesministerium für Bildung und Forschung (BMBF) gefördertes Forschungsprojekt, das die Möglichkeiten des Transfer Learnings in der Zerspanung ausloten und industriell nutzbar machen soll.

Projektträger

Projektträger Karlsruhe (PTKA)
Produktion, Dienstleistung und Arbeit
Karlsruher Institut für Technologie (KIT)

Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen

+49 (0)721 608-25281
+49 (0)721 608-992003

info@ptka.kit.edu
Standort Dresden
PTKA

Ansprechpartner

Sekretariat Karlsruhe

Celina Gabber und Solvig Grünitz

+49 (0)721 608-25281
zentralessekretariat@ptka.kit.edu

Sekretariat Standort Dresden

Heike Blumentritt

+49 (0)721 608-31435
heike.blumentritt@kit.edu